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Abstract-This paper presents a theoretical study of momentum, heat and mass transfer in the laminar 
boundary layer which develops over an inclined flat plate by either free or forced convection when a 
constant wall heat flux is specified : this plate is made with two wet zones which are separated by a dry 
one. From the theoretical analysis, a set of dimensionless coupled equations is deduced and numerically 
solved by using an implicit finite difference method. The results show the effect of most of the main physical 
quantities upon velocity, temperature and concentration profiles in the boundary layer : from this study, 

the length of the dry separation zone appears as an essential criterion. 

1. INTRODUCTJON concentration of the fluid are T, and C,, respectively. 
A constant wall heat flux q is specified on the three 
regions, so that high variations in the wall temperature 
and concentration values occur at x = X, and x = .x2 
because of the changes in evaporation conditions. 

IN THE bulk of heat and mass transfer over plates by 
either natural, mixed or forced convection, many 
papers involving experimental and theoretical inves- 
tigations have been published in the literature and 
most of these studies are based upon the laminar 
boundary layer approach [l-5]. It follows that this 
problem is now well known and the mathematical 
models and correlations which have been developed 
can be applied to many industrial processes, such as 
chemical and drying processes. For these models, a 
constant wall condition is generally specified, but 
there are processes for which this assumption is not 
justified. As an example, in wood dryers, it is possible 
that some pieces are already dry whereas others which 
are placed beside them stay wet. In this paper, we 
focus on this type of problem in order to show how 
the boundary layers which grow over the wet and dry 
zones can interact and also to illustrate the effects of 
this upon the local Nusselt and Sherwood numbers. 
For this purpose, a numerical procedure which can 
be applied to both forced and free convection cases 

has been developed. The geometry of the problem 
under consideration is shown in Fig. 1 : a flat plate, 
with an inclination angle cx from the vertical direction, 
is divided into three regions. The first and the third 
zones, with lengths X, and (L-s2) respectively, are 
wet and they are separated by a dry zone, the length 
of which is (x2-x,). The plate is plunged into a New- 
tonian fluid (air), which can either be at rest (free 
convection case) or have a constant velocity U, : in 
both cases and far from the wall, the temperature and 

2. THEORETICAL ANALYSIS 

In order to set the partial differential system of 
equations which describes momentum, heat and mass 
transfer in the boundary layer, some simplifying 
assumptions are necessary. First of all, we assume that 
the moist air is an ideal gas with constant physical 
properties except for its density, the variations of 

FIG. I. Problem statement and definition of the coordinates. 
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NOMENCLATURE 

c vapour concentration in the boundary u velocity component in the x direction 
layer [kg kg- ‘1 [m s- ‘1 

C” dimensionless vapour concentration in ll* dimensionless velocity component in the 
the boundary layer x* direction 

C0 dry air concentration in the wet air U’X velocity of the forced flow (forced 

[kg kg- ‘I convection case) [m s- ‘1 

C, specific heat of the wet air [J kg- ’ K- ‘1 u velocity component in the Y direction 

C, wall vapour concentration [kg kg- ‘1 [m s- ‘1 

C,* dimensionless wall vapour concentration c* dimensionless velocity component in the 

C, vapour concentration far from the wall y* direction 

[kg kg- ‘1 x.5 I’ coordinates shown in Fig. 1 [m] 
D mass diffusion coefficient of vapour in xc, y* dimensionless coordinates defined in 

dry air [m’ ss’] Table 1 

9 gravitational acceleration [m s- ‘1 XI, .x2 coordinates of the separation zones 
Gr,* modified Grashof number defined by as shown in Fig. 1 [m] 

equation (16) * XT, s* dimensionless values of x, and x2. 
L length of the plate along the x direction 

[ml 
& ~dporization latent heat of water [J kg- ‘1 Greek symbols 

Nn, local Nusselt number u inclination angle from the vertical 
P atmospheric pressure [N m-‘1 direction [rad] 

P”, partial pressure of saturated vapour on Ir coefficient of thermal expansion [K- ‘1 
the wall [N m ‘1 fl* coefficient of mass expansion [kg kg- ‘1 

Pr Prandtl number: Pr = pC,ji S(x) local thickness of the boundary layer [m] 

Y incident heat flux per unit area [W m-‘1 E constant factor : E = 1 for the free 
Re Reynolds number, defined in equation convection case and F = 0 for the 

(17) forced convection case 
SC Schmidt number : SC = v/D TX local wail shear stress divided by p : 
Sty local Sherwood number T, = v &j8&, = 0 [m’ s-‘1 
T temperature in the boundary layer [K] ;1 thermal conductivity of the fluid 
T* dimensionless temperature in the [Wm-’ K-‘1 

boundary layer fi dynamic viscosity of the fluid 

TX wall temperature [K] [kgm 1 --Is-’ 

T;r. dimensionless wall temperature V kinematic viscosity of the fluid 

r, temperature of the fluid far from the wall [m” se- ‘1 

IKI P density of the fluid [kg m-‘I. 

which are possibly at the origin of free convection. In 
the case of natural convective flow, the Boussinesq 

C,(T,) = 0.622&+ (2) 
“% 

approximation is retained and the inclination angle of 
the plate, CI, is restricted to the following condition where P is the total (atmospheric) pressure and P,, is 

161 : 
evaluated from the Bertrand formula [7] : 

W4 
_-tan (CL) << 1 

X 
(1) 

p = ~~“?.443-2795/T,-3,868lo~~~,t~;i, 
vi) (3) 

Lastly, it is assumed that the vapour coming from 

where x is the distance measured along the wall from 
the wall does not disrupt the flow. Other classical 

the stagnation point (see Fig. 1) and S(X) is the thick- 
assumptions such as steady state flow, negligible vis- 

ness of the boundary layer: this condition ensures 
cous dissipation, thermodiffusion and radiative effects 

that the pressure variation along the x direction is 
are also retained. 

negligible. 
Secondly, for the two wet zones, the moisture is 2.2. G#uern~n~ e~~ut~o~s 

assumed to be so high that the wall temperature T, Let u and v be the velocity components along the x 
and vapour concentration C, can be related through and y axes, respectively, T and C being the tern- 
the wall saturated pressure P,,, accordingly to the perature and vapour concentration in the boundary 
following equation : layer. The governing equations which correspond to 
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the above assumptions are : 

au au ah 
“ax +“& = “dy? 

+el cm (cc)tB(T--T,)+8*(c--C-u)l (5) 

(6) 

ac ac a2c 
“z +u &; = Dv 

where c: = I for the natural convection case and E = 0 
for the forced convection case. In equation (5), g 
is the gravitational acceleration, v is the kinematic 

viscosity of the moist air, and b and /I* are, respec- 
tively, the coefficient of thermal expansion and the 
coefficient of mass expansion. The other physical 
quantities appearing in equations (6) and (7) are 
defined in the Nomenclature. The differential system 
of equations (4)-(7) is subjected to wall conditions 
which are different for the wet zones than for the dry 
zone. 

(i) For the wet zones (x < x, and x > x2), the wall 
temperature and vapour concentration are related by 
equation (2) ; we also have 

U(X, 0) = 0 (8) 

D ac 
(9) 

4=_dCK ac 
ay v=. -LTPDJjx=n' (10) 

In equation (9), which is deduced from the Fick law 
[8], C, is the dry air concentration. As shown from 
equation (IO), the constant wall heat flux q divides 
into two components, the last of which is the latent 
heat flux. In this equation, L, is the vaporization 
latent heat of water; it can be evaluated from the 
following relation [7] : 

L, = 4185[579-O.S6(T,-273.15)]. (11) 

(ii) For the dry zone (xi cc x < x2), the normal wall 
velocity component and the wall vapour con- 
centration are equal to zero because there is no evap- 
oration. We thus have : 

u(x, 0) = c(x, 0) = K ay y=o=o (12) 

ar 

q= -IIT ,,=O’ (13) 

For all cases and far from the wall, the boundary 
conditions are 

u+(l-a)U,; v+O; T-+T,; C+C,. 

(14) 

For x = 0, we have : 

u= (l--~)Cl~; T= T,; C=C,. (15) 

2.3. Dimensionless form of equations 
Equations (4)-(7) and boundary conditions (2) and 

(8)-( 15) have been transformed by introducing the 
dimensionless coordinates x* and y* and the dimen- 
sionless form of the velocity components (u* and v*), 
temperature (T*) and vapour concentration (C*) : the 
definitions of these quantities are given in Table 1 
for both free and forced convection cases. In these 
definitions, GrZ is the modified Grashof number 
which is defined by the following relation : 

G,.* _ gfiq ‘OS tajL4 
L r-- (16) 

and the Reynolds number, Re, is 

(17) 

Substitution of the definitions of Table 1 in the 

governing equations leads to the following differential 
system of dimensionless equations : 

g+g=o 

u*g +v*;$ = $ +s(T*+C*) 

aT* aT* 1 Z2T* 
u*ax*+t’*F=pra)‘*? 

ac* ac* i a*c* u*__ +L,*--- = _ ~ 
ax* ay* sc ay*2 

(18) 

(19) 

(20) 

(21) 

where Pr and SC are the Prandtl number and the 
Schmidt number, the definitions of which are given in 

Table I. Definition of dimensionless quantities 

Free convection case 

Forced 
convection 

case 

v* VL 

uGr,*-“5 
v 

u, 
T* g ~0s (GOKT- Tm) L) Gr*_4,5 

T 
v* I. 

T* 

C* sB* cm (UN-C,) L) Gr*-q5 
c 

v* L cz 



the Nomenclature. The boundary conditions become 

(i) For the wet zones (0 < x* < x,/L and 

X,/L < x* < 1) 

U*(x*, 0) = 0 (22) 

Table 2. Definitions of local Nusselt and Sherwood numbers 
and local dimensionless local wall shear stress 

--- ---._ .._- 

-- 
Free convection case Forced convection case 

111--.. .-. -__. 

In equations (23) and (24), the coe~cicnts A,, A, and 
ET are, for the free convection case 

and for the forced convection case, these de~nitions 

are 

DC, R~z”~ A = L7:PDc-. 
Av=~L~; l- ;.r, ’ 

& = ;“T” Re ‘:2. 
I * 

(ii) For the dry zone (x7 < x* K XT) 

rr*(X*, 0) = 2:*(x*, 0) = 
dT* 

+k +1 
,r* = 0 

r?c* 
ay* = 0. ,* = 0 

(26) 

Far from the wall, the boundary conditions are 

24*(X*, co) -+ 1 --E; c*(x*, co) -+ 0 ; 

T*(.u*, co) -5 I --t:; c*(x*, co) I) t --B (27f 

and for .Y* = 0, we get 

U*(o,y*) = T*(O,y*) = C’*(O,p*) = 1 --a. (28) 

Equations (1 Q-(21) and boundary conditions 
(22)-(28) were solved by using a numerical procedure 
which is described in the next section. The interesting 
physical quantities are the local Nusseit number 
(Nu,), the local Sherwood number (Sk,) and the local 
wall shear stress (I-,): their definitions are given in 

Table 2 for both free and forced convection cases. 

3. NUMERICAL PROCEDURE 

The numerical procedure has been adapted from 
the method which was proposed by Nogotov 191. For 
this purpose, the boundary layer region has been 
divided into rectangles of length Ax* and width AJJ*. 
An upwind finite difference technique is used in order 
to discretize equations along the x* direction, whereas 
central differences are applied for the first and second 
derivative approximations with respect to they* direc- 

tion. Let i and j represent a grid point of the boundary 
layer : the resulting finite ditference approximation of 

equations (18)-(21) is 

with : 

A=1 and ,fi = UT’ for k= 1; 

A=Pr and A==7”:’ for k=2; 

A = SC and ,f’; = CFi for k = 3. 

For the boundary conditions, a Taylor expansion 
is used in order to calcuiate the wall tem~rature and 
vapour concentration derivatives. For y* = 0 (i.e. for 
,j = I), we have the following. 

(i) For the two wet zones (0 < x* < XT and 
x; < 1* < I) 

Ul *I+! “._O (33) 

r’T’+ I =1 A, & (3Cy’+ ’ -4cy* 1 + CT:;+ ’ ) (34) 

37’7i+ i _-,$7-y+ 1 +7-y+ f 

+A,(3C~‘+‘-4C~“‘+C~‘+ ‘) = 2Ay” (35) 



Heat and mass transfer from an inclined flat plate 2281 

ly” ’ = g( z-y+ ’ ) (36) 

where the function g(T*) is defined from equation 

(25). 
(ii) For the dry zone (x7 < x* < x:) 

U*‘+ I = U*l+ I 
I = 0 (37) 

3TT’f 1 _4T;‘+ 1 + T;‘+ 1 = 2AyY* (38) 

3CT’+ ’ -4C;‘+ ’ +cy+ ’ = 0, (39) 

For j = J (i.e. y* -+ co), the boundary conditions are 

*,+ I 

UJ 
+ l---E; l$‘+‘+o, 

T*‘+ I 
J 

+ I -&; C,*‘” + l--E. (40) 

Finally, for i = 1 and j = J = 1 (i.e. x* = 0), we get 

~7’ = Tl’ =c*‘=]-E. (41) 

From the discretized system of equations (29)-(32), 
it is seen that each of them form a system of (N x J) 
linear algebraic equations (N being the number of 
grid points along the x* direction). For each value of 
i (i = 1 to N-l), these equations are transformed 
into a matricial system which is solved by using a 
Gaussian elimination method [IO, 111, the maximal 
value of ,j (i.e. J) being determined from the following 
additional boundary condition : 

the discretization of which gives 

l-&-U;:+, < E, (43) 

where E, N 0. The details of matricial calculations can 
be found in ref. [6] and will not be repeated here. 

The numerical solution is obtained by first selecting, 
for i = 1, an arbitrary value for J and for the wall 
temperature TT* from which the value of the wall 
vapour concentration is deduced by means of equa- 
tion (36). The matricial system of equations can then 
be solved and a new vaiue of the wall temperature, 
say fI:, is determined and compared with the guessed 
value Ty* : if the temperature difference 1 T:* -8:I is 
greater than a prefixed accuracy, the new starting 

value is obtained from 

T*2 
TT,:,, + 0 : 

I,“W = 2 

and the procedure is repeated. Once the desired accu- 
racy is obtained, the additional boundary condition 
(42) is tested : if this condition is not verified, the value 
of J is incremented and the above calculations are 

repeated until equation (43) is satisfied. The same 
numerical procedure is then applied for i = 2,. , 
i=N-1. 

4. RESULTS AND DISCUSSION 

All the results of this study have been carried out 
with Pr = 0.71 and SC = 0.63. First, the mathematical 

Table 3. Comparison between our results and those of ref. 

t151 

Reference [ 151 Our results 

Gr: NU, Sk Nu, Sk 

3.607 x lo9 39.959 37.814 39.183 35.814 
7.410 x lo9 46.148 43.323 45.586 41.643 
9.410 x lo9 48.415 45.451 41.922 43.768 
16.77 x lo9 54.331 51.010 54.016 49.332 

model and numerical procedure have been tested by 
comparing our results with some particular cases 
which were reported in the literature. It has been 

verified that our results agree with those of Callahan 
and Marner [12] for the problem of free convection 

from an isothermal flat plate. This problem has also 
been treated by Bottemane [ 131 and Gebhart and Pera 
[ 141. For the case of evaporation from a vertical plate 

subject to a uniform wall heat flux, the comparison 
between our results and those of Vachon [15] shows 
a good agreement, as can be seen from Table 3. 

4.1. Forced convection case 

For several distances from the wall, Figs. 2-4 show 

the dimensionless x-velocity component, temperature 
and vapour concentration profiles in the boundary 
layer. These results have been carried out with 
x7 = XT-XT = 1 -xz = l/3, y = 300 W mm’ and 

U, = 0.8 m s- ‘. The velocity is a decreasing function 
of x* and its profile is not affected by the separation 
zones between the dry and the two wet regions, which 
is the consequence of E = 0 in the momentum equation 
(5). On the other hand, the temperature and vapour 
concentration profiles are highly influenced by the 
presence of the dry zone: as can be seen from Fig. 
3, the temperature increases with x* in all the three 

j , , , 910 
2 4 6 6 IO 

FIG. 2. Dimensionless x*-velocity component profiles in 
the boundary layer : forced convection case. r, = 298 K; 
q=300Wmm2;C - 0.008 kg kg-’ (dry basis) ; U, = 0.8 li - 

m s- ‘. 
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T* 1 y=Omm 
2y:3 

3yrtt 

4 ay=s 

5 yzL13 

I 

I 

It”, IO 

2 4 6 8 10 
., 

FIG. 3. dimensionless temperature profiles in the boundary 
layer: forced convection case. T, = 298 K ; y = 300 W In-’ : 

C, = 0.008 kg kg- ’ (dry basis) ; l./., = 0.8 m s-- I. 

/.yromm 

/’ 

/ 

yz 3 

I 

/y=6 
/’ ,y=* 

FIG. 4. ~~m~nsion~ess vapour concentration profiles in 
the boul~dary layer: forced convection case. T,. = 
298 K : q = 300 W n- ’ ; C, = 0.008 kg kg I (dry basis) : 

U, =OAms-‘. 

regions, but this increase is larger along the dry zone 
because there is no evaporation process on the wall, 
so that the sensible heat is higher according to the 
thermal balances (10) and (13). From Fig. 4, it is 
seen that the vapour concentration is an increasing 
function of x* in the two wet zones, whereas it 
decreases with x* above the dry region. 

As a result of these sudden variations in the wall 
temperature and vapour concentration values at the 
separation zones, the local Nusselt and Sherwood 
numbers are also discontinuous functions of x*, as 
shown in Figs. 5 and 6. For the first moist region, the 
local Nusselt and Sherwood numbers increase with 
.Y*. For x* > x? and up to x* > XT, the Sherwood 
number becomes equal to zero, because there is no 
evaporation, and the wall temperature increase 
induced higher values of the local Nusseit number. At 

NlJ;lOO 

FIG. 5. Local Nussslt number as a function of .T* : forced 
convection cast. T, = 298 K : q = 300 W m-’ ; C,, = 0.008 

kg kg-’ (dry basis); U, -= 0.X m s I. 

8 

6 2 4 6 

L 

X‘” 10 
-$--ii+ 

Ftc;. h. Local Sherwood number as a function of I* : forced 
convection case. T, = 29X K; y = 300 W III- 2 ; C, = 0.008 

kg kg ’ (dry basis) ; .!.I * = 0.8 m s ’ 

the very beginning of the second wet zone (x* = x4), 
the wall temperature is so high that the latent heat 
flux is much greater than the sensible heat flux, so that 
the local Nusselt number first becomes negative and 
then increases with x*. again becoming positive at 
~pproximateiy x* = 0.9. At the satne time, the locaf 
Sherwood number first highly increases before 
decreasing and again increasing. Xt should be noted 
that a negative value of the local Nusselt number 
means that the heat passes from the drying air towards 
the plate. Figure 7 shows the variations of the local 
waif shear stress : as can be predicted from the velocity 
profile, it is a continuous decreasing function of ,Y*. 

The ef-rect of the length of the dry zone upon the 
local Nusselt and Sherwood numbers is shown in Figs. 
8 and 9 : for these calculations, the total length of the 
plate (L) is assumed to be equal to 1 m. For the points 
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rx.lo5 
4 

8 .- 

B- 

2- 

, x:10 
I-J 2 4 6 8 10 

FIG. 7. Local wall shear stress as a function of .x*: forced 
convection case. T, = 298 K : q = 300 W mm ’ ; C, = 0.008 

kg kg- ’ (dry basis) ; U ,~ = 0.8 m s- ‘. 

FIG. 8. 
Nusselt 
q = 300 

I I 

x*,.10 
1 I I I I 

> 

2 4 8 8 IO 

E&t of the dry zone length on the local 
number: forced convection case. T, = 298 K: 
W mm’ ; C, = 0.008 kg kg~- ’ (dry basis) ; U, = 

2 m s- ’ ; L = 1 m. 

Sh,.lOO 

3 
1 x1-x,=0 m 
2 01 

3 0.2 

0.25 

FIG. 9. Effect of the dry zone length on the local Sher- 
wood number : forced convection case. T, = 298 K ; q = 

FIG. 11. Effect of the dry zone length on the local dimen- 

300 W m-* ; C, = 0.008 kg kg-’ (dry basis) ; CJ, = 2 m s-l ; 
sionless vapour concentration for _V = 3 mm: forced con- 
vection case. T,, = 298 K; q = 300 W mm2 ; C,~ = 0.008 kg 

L=lm. kg- ’ (dry basis) ; U, = 2 m s- ’ : L = I m. 

located at _r = 3 mm from the wall, the corresponding 
temperature and vapour concentration profiles are 

plotted in Figs. 10 and 11. It is seen that the larger the 
length (x2-x ,), the higher the mass transfer rate and 
the lower the heat transfer rate along the second wet 
region are: this is due to the fact that an increasing 
value of the dry zone length produces a higher wall 
temperature with an accompanying increase of the 
wall partial pressure of saturated vapour for x = x2. 
At the same time, an increasing value of (.x2-x,) 
induces a decreasing rel,ative humidity of the drying 
air, as can be seen from the dimensionless temperature 
and concentration profiles. As a result, the longer the 
dry zone length, the larger the evaporation rate for 
x = x2. 

Figures 12 and 13 show the variations of the local 

Nusselt and Sherwood numbers as a function of the 
velocity of the forced flow, U, : it is seen that the heat 
and mass transfer rates increase with this velocity 

1 x2-x, z 0 m 

T* 2 0.1 

1.8 T 
a 0.2 

4 0.25 

j , , , , ,x*. IO 

2 4 8 8 10 

FIG. 10. Effect of the dry zone length on the local dimen- 
sionless temperature for y = 3 mm : forced convection case. 
T, =298 K; 4= 300 W mm’; C, =0.008 kg kg-’ (dry 

basis) ; Ii, = 2 m s- ’ ; L = 1 m. 

C* 

3 
F 

1 2-N / 

2 4 
3 

t/ 1 x*-x, = 0 m 1 
2 0 1 

3 0.2 

4 0.25 

x*. IO 
I 

2 4 8 8 10 
, 
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Nu,.108 T _ --- - 1 * 3: . . 1.5 a 2 8 rnt* 

-6 
16 

2 4 6 6 19 

FIG. 12. EffTeet of the free stream velocity on the local 
Nusselt number: forced convection case. T., = 298 K ; q = 

300 W in’-’ ; C, = 0.008 kg kg- ’ (dry basis). 

L._ 3 
“___2 

-------1 

x*x 10 
~--+---s 

FIG. 13. Effect of the free stream veiocity on the iaca~ 
Sherwood ~~~nber: forced convection case. T, = 298 K ; 

q = 300 W m-:; C, = 0.008 kg kg-’ (dry basis). 

and it fallows that the negative value of the Russell 
number for x = .x1 decreases as W, increases. 

The effect of the density of the incident wall heat For the fr~e~~~~ect~~~ case, ~ypi~dl profiles Of the 
ffux, q, un the local NusseIt and Sherwood numbers local Ibuss& and Sherwood numbers are respectively 
is shown in Figs. 14 and 15, respectively. From the shown in Figs. 16 and 17 and they are seen to be very 
~ariatj~ns of the local Sherwood number, it is clear similar to the forced convection case. As for Figs. 5 
that the evaporation rate increases as the incident wall and 6, the lengths of the dry zone and the two wet 
heat flux increases. At the same time, for low values zones are equal. In Fig. 18, the ~dr~at~~n of the 
of (1 (y = 100 W m- “1, the local Nusselt number first corresponding local wall shear stress is reported: 
slightly/ increases up to x* cz 0.1 and then decreases because E = 1, the momentum equation is now 
and becomes negative for .Y* Y 0.2. Indeed, from this coupled with the energy and mass di~us~on equations~ 
value and up tu the separation zone between the first sa that the velocity and its first derivative are highly 
wet region and the dry one, the wall ten~~rature cQrreIated with the buo~ncy thermal and mass 
becomes lower than the temperature of &he drying forces. For x* > x7, the wall temperature increases 
air because of the increase of wail cooling by the with an accompanying increase of the buoyancy ther- 
cva~~r~ti~n process. In the dry zone, the wall tem- mal force, as compared with rhe first wet zone. It 
perature again increases because there is no longer follows that the drying air is accelerated along the dry 
cva~~rat~an and the Nusselt number also increases region and the wall shear stress also increases before 
and becomes positive with a larger value than for suddenly decreasing for x = .x3. The d~mensi~n~ess 

-3 
2 k 6 8 16 

FIG. 14, Effect of the incident wall heat flux density on the 

local Nusselt number : forced convection case. T,, = 298 K ; 
U, = 2 m s- ’ ; C, = Q.O@3 kg kg” ’ (dry basis). 

FIG. IS, Etrect of the incident wail heat flux density on 
the local Sherwood number : forced convection case. T, = 

298 K ; U, = 2 m s- ’ ; C,. = 0.008 kg kg’.’ f (dry basis). 

q = 500 W rnm2, since the wall temperature gradient 
also increases. 
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-2 

-4 c 

-6 I-- 
2 

FIG. 16. Variation of the local Nusselt number: free con- 
vection case. T, = 293 K ; q = 200 W mm’; C, = 0.008 kg 

kg ’ (dry basis) : CY = 45”. 

Sh;‘O 

‘6 

‘2 

6 

T 

$*.I0 
2 4 6 6 ‘0 

FIG. 17. Variation of the local Sherwood number: free con- 
vection case. T, = 293 K ; q = 200 W m _ * ; C, = 0.008 kg 

kg ’ (dry basis) ; ct = 45”. 

FIG. 18. Variation of the local wall shear stress: free con- 
vection case. T, = 293 K ; y = 200 W m-* ; C, = 0.008 kg 

kg- ’ (dry basis) ; c( = 45”. 

.x*-velocity, temperature and vapour concentration 

profiles are drawn in Figs. 19-21, respectively. Figure 
19 clearly shows the fluid acceleration which occurs 

near the wall in the dry zone. 
Figures 22 and 23 illustrate the effect of the in- 

clination angle from the vertical plane on the local 
Nusselt and Sherwood numbers: in the momentum 
equation, the intensity of the buoyancy forces dimin- 
ishes as this angle increases, so that the heat and mass 

transfer coefficients also decrease. These results agree 
with others which are reported in the literature [5] and 
it can be concluded that the inclination angle is not 
an essential criterion. On the other hand, the velocity, 
temperature and vapour concentration profiles are 
highly affected by the length of the dry zone, as for 
the forced convection case. Figures 24 and 25 show 

i”. 
t 

y (mm):7.36 

,A' 

FIG. 19. Dimensionless x*-velocity profiles in the boundary 
layer: free convection case. T,x = 293 K ; y = 200 W m-* ; 

C, = 0.008 kg kg- ’ (dry basis) ; ct = 45”. 
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FIG. 20. Dimensionless local temperature profiles in the 
boundary layer : free convection case. T, = 293 K ; y = 200 

W mm 2 : C, = 0.008 kg kg- ’ (dry basis) ; 61 = 45 ‘. 
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FIG. 21. Dimensionless local vapour concentration profiles 
in the boundary layer: free convection case. T, = 293 K; 
q=2oOwn-~;C, = 0.008 kg kg- ’ (dry basis) : c( = 45 ‘. 

III 

1 

O.! 

0 

-10 

-20 

% “I 

f 

0.01 

x? 10 
8 

FIG. 23. Variation of the local Sherwood number as a func- 
tion of the inclination angle ly : free convectiol~ case. 
T, = 298 K; q = 200 W mm’; C, = 0.001 kg kg-’ (dry 

basis). 
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FIG. 22. Variation of the local Nusselt number as a function 
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of the inclination angle LX: free convection case. T, = 298 
K;q=200Wm * ; C, = 0.001 kg kg ’ (dry basis). 

FIG. 24. Variation of the local Nusselt number as a function 
of the dry zone length : free convection case. T,~ = 298 K ; 
y = 200 w m ’ : C, = 0.001 kg kg- ! (dry basis) ; cx = 45” ; 

t=lm. 

this effect on the local Nusselt and Sherwood 
numbers. It is seen that the larger the length (.Y?-x,), 
the better the mass transfer rate along the last wet 
region, which is due to the increase of the wall tem- 
perature at the end of the dry zone. 

5. CONCLUSION 

The laminar heat and mass transfer from an 
inclined flat plate with a dry zone inserted between 
two wet zones has been studied. Appropriate math- 
ematical transformations allowed us to obtain the 

same dimensionless system of equations in order to 
study both free and forced convection cases. These 
equations were solved by using an adaptation of the 
Nogotov procedure. The effects of the main physical 
parameters on the velocity, temperature and vapour 
concentration profiles in the boundary layer have been 
examined and the resulting local Nusselt and Sher- 
wood numbers have been determined. From the 
results, it appears that the length of the central dry 
region is an essential criterion. 
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FIG. 25. Variation of the local Sherwood number as a func- 
tion of the dry zone length : free convection case. r, = 298 
K; q=200 W mm*; C,, = 0.001 kg kgg’ (dry basis) ; 

a = 45“; L = 1 m. 
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ETUDE NUMERIQUE DU TRANSFERT DE MASSE ET DE CHALEUR SUR UNE 
PLAQUE PLANE INCLINEE, CONSTITUEE DE ZONES SECHES ET HUMIDES 

R&sum&Cet article prtsente une etude theorique des transferts d’impulsion, de masse et de chaleur dans 
la couche limite laminaire qui si developpe par convection for&e ou naturelle au-dessus d’une plaque plane 
inclinee lorsqu’elle est soumise a un flux de densitt constante. Cette plaque est constituee de deux zones 

humides qui encadrent une zone s&he. Les equations sont adimensionnalistes et le systtme difftrentiel qui 

en resulte est resolu par une methode implicite aux differences finies. Les resultats mettent en evidence 
I’influence des principaux paramttres sur les profils de vitesse, de temperature et de concentration dans la 

couche limite : en particulier, la longueur de la zone s&he joue un role essentiel. 

NUMERISCHE UNTERSUCHUNG DER WARME- UND STOFFUBERTRAGUNG AN 
EINER GENEIGTEN PLATTE MIT NASSEN UND TROCKENEN GEBIETEN 

Zusammenf’assung-In der vorliegenden Arbeit wird die Impuls-, Warme- und Stoffiibertragung in der 
laminaren Grenzschicht untersucht, die sich entlang einer geneigten ebenen Platte bei freier oder erzwung- 
ener Konvektion mit konstanter Wirmestromdichte an der Wand ausbildet. Die Platte besteht aus zwei 
nassen Zonen, die durch eine trockene Zone getrennt sind. Aus der theoretischen Analyse ergibt sich 
ein System dimensionsloser gekoppelter Gleichungen, das mit Hiife eines impliziten Finite-Differenzen 
Verfahrens geldst wird. Die Ergebnisse zeigen den EinfluB der meisten physikalischen GrundgroBen 
auf Geschwindigkeits-, Temperatur- und Konzentrationsprofile in der Grenzschicht. Aufgrund dieser 

Untersuchung scheint die Lange der trockene Trennungszone ein grundlegendes Kriterium zu sein. 

YMCJIEHHbIR AHAJIM3 TEIUIO-W MACCOIIEPEHOCA OT HAKnOHHOR IIOJIOCKOI? 
ILJIACTHHbI IIPH HAJIAYMM BJIA)KHOfi A CYXOn 30H 

AmmTausa-TeopewwccKIl uccnenyercn nepeuoc uhmynbca, renna u Maccbr B naMnnapnoM norpamm- 
HOM CAOe, pa3BIIBaIOIUIIiiCJI HaA HaKJIOHHOti IIAOCKOfi IIJIaCTtlHOii IIOA AeiiCTBHeM CBO6OAHOti IIAII 
BbIHyWb3HHOii KOHBeKIIIIti B cnygae IIOCTOPHHO~O 3aAannoro TennoBoro nOTOKa Ha CTeHKe. rInacTBHa 

H3rOTOBJIeHa TaKIiM o6pa3oM, ‘IT0 Ha Heii IIpHCyTCTByIoT ABe BJIamHbIe 30Hb1, pa3AeJIeHHbIe CyXOti. 
BbIBeAeHHaK II3 TeO~TWIeCKOrO aHaJIH3a CIICTeMa B3aHMOCBI3aHHbIX 6e3pa3MepHbIx ypaBHeHHii 
peZIaeTCK WICAeHHO C IIOMOIUbbJ HelIBHOr0 MeTOAa KOHe’IHbIX pa3HOCTei. Pe3yJIbTaTbI HAAIOCTpIIpyIoT 
BJIBIlHHe 60AbIIIIIHCTBa OCHOBHbIX @I3IWCICIIX BeAH’IEIH Ha IIpO&IJIII CKOpOCTeii, TeMnepaTyp II KOH- 
IIeHTpaIIIIfi B IIOrpaHWIHOM CJIOe. M3 AaHHOii pa6OTbI CJIeAyeT, ST0 AAHHa CyXOii pa3AeAKIOIAeii 30HbI 

IIBJIII~TCP 0npeAennIomuM KpuTepHeM. 


