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Abstract—This paper presents a theoretical study of momentum, heat and mass transfer in the laminar

boundary layer which develops over an inclined flat plate by either free or forced convection when a

constant wall heat flux is specified : this plate is made with two wet zones which are separated by a dry

one. From the theoretical analysis, a set of dimensionless coupled equations is deduced and numerically

solved by using an implicit finite difference method. The results show the effect of most of the main physical

quantities upon velocity, temperature and concentration profiles in the boundary layer: from this study,
the length of the dry separation zone appears as an essential criterion.

1. INTRODUCTION

In THE bulk of heat and mass transfer over plates by
either natural, mixed or forced convection, many
papers involving experimental and theoretical inves-
tigations have been published in the literature and
most of these studies are based upon the laminar
boundary layer approach [1-5]. Tt follows that this
problem is now well known and the mathematical
models and correlations which have been developed
can be applied to many industrial processes, such as
chemical and drying processes. For these models, a
constant wall condition is generally specified, but
there are processes for which this assumption is not
justified. As an example, in wood dryers, it is possible
that some pieces are already dry whereas others which
are placed beside them stay wet. In this paper, we
focus on this type of problem in order to show how
the boundary layers which grow over the wet and dry
zones can interact and also to illustrate the effects of
this upon the local Nusselt and Sherwood numbers.
For this purpose, a numerical procedure which can
be applied to both forced and free convection cases
has been developed. The geometry of the problem
under consideration is shown in Fig. 1: a flat plate,
with an inclination angle « from the vertical direction,
is divided into three regions. The first and the third
zones, with lengths x, and (L —x,) respectively, are
wet and they are separated by a dry zone, the length
of which is (x,—x). The plate is plunged into a New-
tonian fluid (air), which can either be at rest (free
convection case) or have a constant velocity U, : in
both cases and far from the wall, the temperature and

concentration of the fluid are 7, and C_., respectively.
A constant wall heat flux ¢ is specified on the three
regions, so that high variations in the wall temperature
and concentration values occur at x = x, and x = x,
because of the changes in evaporation conditions.

2. THEORETICAL ANALYSIS

2.1. Simplifying assumptions

In order to set the partial differential system of
equations which describes momentum, heat and mass
transfer in the boundary layer, some simplifying
assumptions are necessary. First of all, we assume that
the moist air is an ideal gas with constant physical
properties except for its density, the variations of

Fi1G. L. Problem statement and definition of the coordinates.
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C vapour concentration in the boundary
layer [kgkg™ ']

C*  dimensionless vapour concentration in
the boundary layer

C,  dry air concentration in the wet air

(kg kg™ ']

specific heat of the wet air [Jkg™' K]

C,  wall vapour concentration [kg kg™']

C*  dimensionless wall vapour concentration

C,  vapour concentration far from the wall

kgkg™ ']

D mass diffusion coefficient of vapour in
dry air [m? s~ ]

g gravitational acceleration [m s™’]

Gr¥  modified Grashof number defined by
equation (16)

L length of the plate along the x direction

[m]
Ly  vaporization latent heat of water [J kg™ ']
local Nusselt number
P atmospheric pressure [N m™?]
P, partial pressure of saturated vapour on
the wall [N m~?
Pr Prandtl number: Pr = uC,/A

q incident heat flux per unit area [W m~?]
Re Reynolds number, defined in equation
an

Se Schmidt number: S¢ = v/D

Sh,.  local Sherwood number

T temperature in the boundary layer [K]

T* dimensionless temperature in the
boundary layer

Ty wall temperature [K]

T*  dimensionless wall temperature
temperature of the fluid far from the wall
K]

NOMENCLATURE

u velocity component in the x direction
[ms~']

u* dimensionless velocity component in the
x* direction

U,  velocity of the forced flow (forced
convection case) [m s~ ']

v velocity component in the y direction
[ms™']

v* dimensionless velocity component in the
y* direction

x,y coordinates shown in Fig. 1 [m]

x*, y* dimensionless coordinates defined in
Table 1

X, X, coordinates of the separation zones
as shown in Fig. 1 [m]
x¥, x§ dimensionless values of x, and x,.
Greek symbols
o inclination angle from the vertical
direction [rad]
B coefficient of thermal expansion [K =]

B*  coefficient of mass expansion [kg kg™']
d(x) local thickness of the boundary layer [m]
g constant factor: ¢ = 1 for the free
convection case and ¢ = 0 for the
forced convection case
I, local wall shear stress divided by p:
T\ = voujdyl,. o [m* s~ 7]
A thermal conductivity of the fluid

[Wm~ 'K~ ']

u dynamic viscosity of the fluid
kgm ‘s ']

v kinematic viscosity of the flmd
[m?s~ ']

P density of the fluid [kg m™°].

which are possibly at the origin of free convection. In
the case of natural convective flow, the Boussinesq
approximation is retained and the inclination angle of
the plate, a, is restricted to the following condition

[6]:

é();—x)- tan {o) < 1 N

where x is the distance measured along the wall from
the stagnation point (see Fig. 1) and (x) is the thick-
ness of the boundary layer: this condition ensures
that the pressure variation along the x direction is
negligible.

Secondly, for the two wet zones, the moisture is
assumed to be so high that the wall temperature T,
and vapour concentration C,, can be related through
the wall saturated pressure P, accordingly to the
following equation:

Py
C,(T,) =0.622 PTOITRP. )
where P is the total (atmospheric) pressure and P, is
evaluated from the Bertrand formula [7]:

P, = 10F1 7443 2795/7, — 3.868 I, (7)) 3)

Lastly, it is assumed that the vapour coming from
the wall does not disrupt the flow. Other classical
assumptions such as steady state flow, negligible vis-
cous dissipation, thermodiffusion and radiative effects
are also retained.

2.2. Governing equations

Let u and » be the velocity components along the x
and y axes, respectively, T and C being the tem-
perature and vapour concentration in the boundary
layer. The governing equations which correspond to
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the above assumptions are:

du 0v 0 @)

ox oy
ou ov
U— +v-—=1v

. Ou
6x+bay ay?
+eg cos (D[B(T—T.)+*(C—Cy)] (5)

oT 8T i T

4= 6
“ox t dy  pC, 0y* ®

oc  acC o*C

i - p_ = 7
ol +v 3 D 3 @)

where £ = 1 for the natural convection case and ¢ = 0
for the forced convection case. In equation (5), g
is the gravitational acceleration, v is the kinematic
viscosity of the moist air, and B and B* are, respec-
tively, the coefficient of thermal expansion and the
coefficient of mass expansion. The other physical
quantities appearing in equations (6) and (7) are
defined in the Nomenclature. The differential system
of equations (4)—(7) is subjected to wall conditions
which are different for the wet zones than for the dry
zone.

(i) For the wet zones (x < x, and x > x,), the wall
temperature and vapour concentration are related by
equation (2) ; we also have

u(x,0) =0 (®)
D acC
v(x,0) = — 1—C, @L \ )
= ,1‘3— LypD (10)
7= ay y=0 e ay r=20

In equation (9), which is deduced from the Fick law
[8], C, is the dry air concentration. As shown from
equation (10), the constant wall heat flux ¢ divides
into two components, the last of which is the latent
heat flux. In this equation, L; is the vaporization
latent heat of water; it can be evaluated from the
following relation [7]:

Ly = 4185(579—0.56(T,, —273.15)].  (11)

(ii) For the dry zone (x, < x < x,), the normal wall
velocity component and the wall vapour con-
centration are equal to zero because there is no evap-
oration. We thus have:

u(x,0) =v(x,0)=%yg y:0=0 (12)
oT

=—l— . 13

q o (13)

For all cases and far from the wall, the boundary
conditions are
u—->1—-8U,; v—0;

T-T,; C-C,.

(14
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For x = 0, we have:

u=(I1-gU,; T=T,; C=C,. (15
2.3. Dimensionless form of equations

Equations (4)—(7) and boundary conditions (2) and
(8)—(15) have been transformed by introducing the
dimensionless coordinates x* and y* and the dimen-
sionless form of the velocity components (¢* and v*),
temperature (7*) and vapour concentration (C*) : the
definitions of these quantities are given in Table 1
for both free and forced convection cases. In these
definitions, Grf is the modified Grashof number
which 1s defined by the following relation:

Gr,’f = ‘“F* (16)
and the Reynolds number, Re, is
U,L
Re = ——. a7n

v

Substitution of the definitions of Table 1 in the
governing equations leads to the following differential
system of dimensionless equations:

ou* Ov*
— = 18
ox* Oyt 0 (18
ou* ot o%u*
Sl «27 _ 7" * * 19
owr T g S gyer TEITHED (D)
oT* oT* 1 ¢'T*
R 20
“ ox* tv oy*  Pr oy*? (20)
* * 2%
LRSI S
Ox* oy*  Sc oy*

where Pr and Sc are the Prandtl number and the
Schmidt number, the definitions of which are given in

Table 1. Definition of dimensionless quantities

Forced
convection
Free convection case case
X X
* hat ot
X I I
y y 2
y* ZGrtHS ZR(,I/.
ul u
% it *—2/5 _
u v Gri U,
vl v
* - *—1/5 _
v ’ Grt U,
o 9S@BT-T) Lo T
v? L T,
Cc* gﬂ* cos (a)(c_cw) L3 Gr:—“/S E_
v? C

*
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the Nomenclature. The boundary conditions become

(i) For the wet
XL <x* <)

zones (0 < x* < x,/L and

u*(x*,0) =0 22)
oCc*
*(x* 0 A, 23
¥ (x*,0) = ay* e 23)
or* o - B 24
a}’ =0 T@)’* I“:‘:O-——“ ! ( )
Co (T
* _ TWAIW
C* o 2%

In equations (23) and (24), the coefficients 4,, Ay and
B are, for the free convection case

_ DLgp

(1 —Cy)Avp*
and for the forced convection case, these definitions
are

A, = Gr— %,

_ DC, Re'? _ LypDC,
VUULL(I-Cy T T,
Lg .,
Br= 7. Re

(ii) For the dry zone (x¥ < x* < x¥%)

W (x*,0) = 0¥ {(x*,0) = CT: +1
il I
Ll -
Far from the wall, the boundary conditions are
w*(x*, w)->1—e; v*(x* 0} —0;
T*(x*, 00) —» 1 —¢; CH¥x*,00)—1—¢ @7
and for x* = 0, we get
w*0, v*) = T*0, y*) = C*0,p*) = 1 —&. (28)

Equations (18)-(21) and boundary conditions
(22)-(28) were solved by using a numerical procedure
which is described in the next section. The interesting
physical quantities are the local Nusselt number
{(Nu,), the local Sherwood number (S%,) and the local
wall shear stress (I',): their definitions are given in
Table 2 for both free and forced convection cases.

3. NUMERICAL PROCEDURE

The numerical procedure has been adapted from
the method which was proposed by Nogotov [9]. For
this purpose, the boundary layer region has been
divided into rectangles of length Ax* and width Ay*.
An upwind finite difference technique is used in order
to discretize equations along the x* direction, whereas
central differences are applied for the first and second
derivative approximations with respect to the y* direc-
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Table 2. Definitions of local Nusselt and Sherwood numbers
and local dimensionless local wall shear stress

Free convection case Forced convection case

prls 2t 3
_*(,T

ay*

FT*

Nu,

o0
TTE( 0y

__Gr*) 5

Sh,

¥ U, Us por u*
el
Sl I L ay*

|
]
%
I
|

= ()

tion. Let i and jrepresent a grid point of the boundary
layer: the resulting finite difference approximation of
equations (18)-(21) s

xi+ 1 __ axm—i A}

o - (29)
a ki b et
—e(TH +Cr )y =4, (30)
ayTEY +b,, TF+ 4oy, T =d,, a3n
ayCE 4 b, CF ey, CHY = dy (32)
where
P A
YT 2Ap A(AYSY
poo M2
W oAk T A(Ay¥)*’
A
% = o A
i i
dy = tj&,x{“
with :
A4=1 and fj=u} for k=1,
A=Pr and fi=TF for k=2;
A= Sc and ;‘j =} for k=3

For the boundary conditions, a Taylor cxpansion
is used in order to calculate the wall temperature and
vapour concentration derivatives. For y* = 0 (i.e. for
Jj = 1), we have the following.

(i) For the two wet zones (0 <x* < x* and
xFax*<l)

Wit =0 (33
vs{u‘—»»l - 2A - (3C$:+! 4C§r‘+ 1 +C§i+!) (34)
37*>'ki+ 1 ”4T§=z+i + T§l+ i

+ARBCT = ACK L CY ) = 2850 (39)
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Crt =Tt (36)

where the function g(7T*) is defined from equation
(25).
(i) For the dry zone (x* < x* < x%)

uTi+l — vTi+—| — 0 (37)
3TT!'+I_4T;!'+|+T>;I'+I - 2Ay* (38)
3CTH —4CkH 4O =0, (39)

For j = J (i.e. y* - o), the boundary conditions are

u7i+|_)1_£; U;ewl_)o’

T3 o l—e; CFF o1

(40)
Finally, fori=1and j=J=1 (i.e. x* = 0), we get
(41

W' =TH =C =1-e

From the discretized system of equations (29)-(32),

it is seen that each of them form a system of (N x J)

linear algebraic equations (N being the number of

grid points along the x* direction). For each value of

i (i=1to N—1), these equations are transformed

into a matricial system which is solved by using a

Gaussian elimination method {10, 11], the maximal

value of j (i.e. J) being determined from the following
additional boundary condition:

3
vé o0 42)
the discretization of which gives
l—e—u*"' e, 43)

where ¢, ~ 0. The details of matricial calculations can
be found in ref. [6] and will not be repeated here.
The numerical solution is obtained by first selecting,
for i = 1, an arbitrary value for J and for the wall
temperature 7*? from which the value of the wall
vapour concentration is deduced by means of equa-
tion (36). The matricial system of equations can then
be solved and a new value of the wall temperature,
say 02, is determined and compared with the guessed
value T*?: if the temperature difference |TF2 87| is
greater than a prefixed accuracy, the new starting
value is obtained from
T*Z 02
T, = e (44)
and the procedure is repeated. Once the desired accu-
racy is obtained, the additional boundary condition
(42) is tested : if this condition is not verified, the value
of J is incremented and the above calculations are
repeated until equation (43) is satisfied. The same
numerical procedure is then applied for i=2,...,
i=N-1.

4. RESULTS AND DISCUSSION

All the results of this study have been carried out
with Pr = 0.71 and Sc = 0.63. First, the mathematical
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Table 3. Comparison between our results and those of ref.

[13]

Reference [15) Our results

Gr* Nu, Sh, Nu, Sh,
3.607x10°  39.959  37.814 39.183 35814
7.410x 10°  46.148 43.323 45.586 41.643
9.410x 10° 48.415  45.451 47922 43768
16.77x10°  54.337 51.010 54.016 49.332

model and numerical procedure have been tested by
comparing our results with some particular cases
which were reported in the literature. It has been
verified that our results agree with those of Callahan
and Marner [12] for the problem of free convection
from an isothermal flat plate. This problem has also
been treated by Bottemane [13] and Gebhart and Pera
[14]. For the case of evaporation from a vertical plate
subject to a uniform wall heat flux, the comparison
between our results and those of Vachon [15] shows
a good agreement, as can be seen from Table 3.

4.1. Forced convection case

For several distances from the wall, Figs. 24 show
the dimensionless x-velocity component, temperature
and vapour concentration profiles in the boundary
layer. These results have been carried out with
xf=xt—xt=1-x¥=1/3, ¢g=300 W m* and
U, =08ms~'. The velocity is a decreasing function
of x* and its profile is not affected by the separation
zones between the dry and the two wet regions, which
is the consequence of ¢ = 0 in the momentum equation
(5). On the other hand, the temperature and vapour
concentration profiles are highly influenced by the
presence of the dry zone: as can be seen from Fig.
3, the temperature increases with x* in all the three

1
Yy=13mm
0.75 -
y=9
0.5 yoo
0.25 y=3
x".10

2 4 6 8 10

F1G. 2. Dimensionless x*-velocity component profiles in

the boundary layer: forced convection case. T, =298 K ;

g=300Wm~?;C, =0.008 kg kg™' (dry basis); U, = 0.8
ms™',
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x 10

- d

F1G. 3. Dimensionless temperature profiles in the boundary
layer : forced convection case. 7', = 298K ;¢ = 300 Wm ™
C, =0.008 kg kg™ (dry basis); U, =08ms ",

¢
6~
/5=0 mm
y= 3
4 ‘ /
|/
/ e Y= ¢
2t/ / o
S 4=
/ ,// =13
/;“Ms
1 i A A, k3 xtlo

2 4 6 8 18

FiG. 4. Dimensionless vapour concentration profiles in

the boundary layer: forced convection case. T, =

298 K g =300 Wm™?; C,. = 0.008 kg kg~ ! (dry basis);
U, =08ms™'.

regions, but this increase is larger along the dry zone
because there is no evaporation process on the wall,
so that the sensible heat is higher according to the
thermal balances (10) and (13). From Fig. 4, it is
seen that the vapour concentration is an increasing
function of x* in the two wet zones, whereas it
decreases with x* above the dry region.

As a result of these sudden variations in the wall
temperature and vapour concentration values at the
separation zones, the local Nusselt and Sherwood
numbers are also discontinuous functions of x*, as
shown in Figs. 5 and 6. For the first moist region, the
local Nusselt and Sherwood numbers increase with
x*. For x* > x¥ and up to x* > x%, the Sherwood
number becomes equal to zero, because there is no
evaporation, and the wall temperature increase
induced higher values of the local Nusselt number. At

M. MaMMOU ¢r o/,

HU;WO

x%10

2

L L % i

7 & 6 8 10

FiG. 8. Local Nusselt number as a function of x*: forced
convection case. 7, = 298 K¢ =300 W m™°; C, = 0.008
kgkg~!{dry basis); U, =08ms '

Sh;10

x* 10

L L Il i F

e 2 & & 8 10

FiG. 6. Local Sherwood number as a function of x*: forced
convectioncase. T, =298 K; ¢ =300 Wm™*; C, = 0.008
kg kg ' (dry basis); U, =08ms™ .

the very beginning of the second wet zone (x* = x%),
the wall temperature is so high that the latent heat
flux is much greater than the sensible heat flux, so that
the local Nusselt number first becomes negative and
then increases with x¥*, again becoming positive at
approximately x* = 0.9. At the same time, the local
Sherwood number first highly increases before
decreasing and again increasing. It should be noted
that a negative value of the local Nusselt number
means that the heat passes from the drying air towards
the plate. Figure 7 shows the variations of the local
wall shear stress : as can be predicted from the velocity
profile, it is a continuous decreasing function of x*.
The effect of the length of the dry zone upon the
local Nusselt and Sherwood numbers is shown in Figs.
8 and 9: for these calculations, the total length of the
plate (L) is assumed to be equal to 1 m. For the points
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r10°
o
1
6
4L
2+
¥ an
1 L L 1 . XxIU

0 2 4% ¢ 8 10

F1G. 7. Local wall shear stress as a function of x*: forced
convection case. T,, = 298 K: g = 300 Wm~?; C_ = 0.008
kg kg ' (dry basis); U, =08 ms™".

N, - 100
X2-X1= 0 m
041

0.2
0.25

&> w N =

x*10

L 1 1 ! §

2 4 6 8 10
Fig. 8. Effect of the dry zone length on the local

Nusselt number: forced convection case. T, =298 K:
g=2300 Wm~?; C,=0008 kg kg~' (dry basis); U, =
2ms ';L=1m.

Sh,xlﬂﬂ 1 X=X, 20 m
3t 2 0.1
4 3 0.2
4 0.25
3
21
2
—
| -
=l
x*.10

0 2 4 B 8 10
FiG. 9. Effect of the dry zone length on the local Sher-
wood number: forced convection case. T, =298 K; g =
300Wm~2; C,, =0.008 kg kg~ ' (dry basis); U, =2ms™~';
L=1m.
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located at y = 3 mm from the wall, the corresponding
temperature and vapour concentration profiles are
plotted in Figs. 10 and 11. It is seen that the larger the
length (x,— x,), the higher the mass transfer rate and
the lower the heat transfer rate along the second wet
region are: this is due to the fact that an increasing
value of the dry zone length produces a higher wall
temperature with an accompanying increase of the
wall partial pressure of saturated vapour for x = x,.
At the same time, an increasing value of (x,—x,)
induces a decreasing relative humidity of the drying
air, as can be seen from the dimensionless temperature
and concentration profiles. As a result, the longer the
dry zone length, the larger the evaporation rate for
X = X,.

Figures 12 and 13 show the variations of the local
Nussclt and Sherwood numbers as a function of the
velocity of the forced flow, U, : it is seen that the heat
and mass transfer rates increase with this velocity

1 )(2—)(1 = 0m
T 2 0.1
3 0.2
F 4q 0.25
1 L L 1 L x". 10

2 4 6 8 10

FiG. 10. Effect of the dry zone length on the local dimen-

sionless temperature for y = 3 mm : forced convection case.

T,=298 K; ¢g=300Wm?; C, =0.008 kg kg~' (dry
basis); U, =2ms '; L=1Im.

o m
2 0.1
3 0.2
4 0.25

1 H 1 1 L x“ Iu
z & 6 8 10

FiG. 11. Effect of the dry zone length on the local dimen-

sionless vapour concentration for y = 3 mm: forced con-

vection case. 7,, =298 K; ¢ =300 Wm~?; C,, = 0.008 kg
kg '(drybasis); U, =2ms™ 'L =1 m.
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Nu, -100 .
— 1 OB mis
-2 1.5
— 3 2
ez
1
-2
-& 1.
-8k
i I 3. i x*"ﬂ
2 4 ] 8 10

Fia. 14, Effect of the incident wall heat flux density on the
local Nusselt number : forced convection case. T, = 298 K ;

Fic. 12. Effect of the free stream velocity on the local
Nusselt number: forced convection case. T, =298 K; ¢ =
00Wm~?; C, = 0.008 kg kg™! (dry basis).

sh,.100
3
1 D8 mis
2 18
2k o
!
i{\ 3
1t R
N
3/,«
e
f ( ‘ ‘ x*. 10
82 4 8 8 w0

FiG. 13. Effect of the free stream velocity on the local
Sherwood number: forced convection case. T, =298 K;
g=300Wm?,C, =0.008 kg kg~ (dry basis).

and it follows that the negative value of the Nusselt
number for x = x, decreases as U, increases.

The effect of the density of the incident wall heat
flux, ¢, on the local Nusselt and Sherwood numbers
is shown in Figs. 14 and 15, respectively. From the
variations of the local Sherwood number, it is clear
that the evaporation rate increases as the incident wall
heat flux increases. At the same time, for low values
of g (g = 100 W m™7), the local Nusselt number first
slightly increases up to x* > 0.1 and then decreases
and becomes negative for x* ~ 0.2. Indeed, from this
value and up to the separation zone between the first
wet region and the dry one, the wall temperature
becomes lower than the temperature of the drying
air because of the increase of wall cooling by the
evaporation process. In the dry zone, the wall tem-
perature again increases because there is no longer
cvaporation and the Nusselt number also increases
and becomes positive with a larger value than for

U,=2ms ' C, = 0008 kgkg™' (dry basis).

$h,«100
I+ e G 2500 wim?
——— 100
2L
3
A
R
M e
IR
1’/
/f/
™
3 i 1 1 1 X 10

07Ty s 8 10

FiG. 15, Effect of the incident wall heat flux density on
the local Sherwood number: forced convection case. 7, =
298 K: U, =2ms™ ' C, =0.008 kg kg™ (dry basis).

¢ = 500 W m™?, since the wall temperature gradient
also increases.

4.2. Free convection case

For the free convection case, typical profiles of the
local Nusselt and Sherwood numbers are respectively
shown in Figs. 16 and 17 and they are seen to be very
similar to the forced convection case. As for Figs. §
and 6, the lengths of the dry zone and the two wet
zones are equal. In Fig. 18, the variation of the
corresponding local wall shear stress is reported:
because ¢ = I, the momentum equation is now
coupled with the energy and mass diffusion equations,
50 that the velocity and its first derivative are highly
correlated with the buoyancy thermal and mass
forces. For x* > x¥, the wall temperature increases
with an accompanying increase of the buoyancy ther-
mal force, as compared with the first wet zone, It
follows that the drying air is accelerated along the dry
region and the wall shear stress also increases before
suddenly decreasing for x = x3. The dimensionless
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x*.10
L 1 1 1 1
2 4 6 8 10
F1G. 16. Variation of the local Nusselt number: free con-

vection case. T, = 293 K; ¢ =200 Wm~?*; C, = 0.008 kg
kg~ ' (dry basis); o = 45°.

$h,10

x*. 10

2 4 6 8 10

F1G. 17. Variation of the local Sherwood number : free con-
vection case. T, =293 K; ¢ =200W m~%; C, = 0.008 kg
kg™ ' (dry basis) ; a = 45°.

5
1[‘)(-10
3+

1 1 L i i x*‘lu
0 2 ) 6 8 10

F1G. 18. Variation of the local wall shear stress: free con-
vection case. 7, =293 K; ¢ =200 Wm~2; C, = 0.008 kg
kg~"' (dry basis); « = 45°.
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x*-velocity, temperature and vapour concentration
profiles are drawn in Figs. 19-21, respectively. Figure
19 clearly shows the fluid acceleration which occurs
near the wall in the dry zone.

Figures 22 and 23 illustrate the effect of the in-
clination angle from the vertical plane on the local
Nusselt and Sherwood numbers: in the momentum
equation, the intensity of the buoyancy forces dimin-
ishes as this angle increases, so that the heat and mass
transfer coefficients also decrease. These results agree
with others which are reported in the literature [5] and
it can be concluded that the inclination angle is not
an essential criterion. On the other hand, the velocity,
temperature and vapour concentration profiles are
highly affected by the length of the dry zone, as for
the forced convection case. Figures 24 and 25 show
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F1G. 19. Dimensionless x*-velocity profiles in the boundary
layer: free convection case. T,, = 293 K; ¢ =200 W m~?;
C, =0.008 kg kg™ ' (dry basis); x = 45°.
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Fig. 20. Dimensionless local temperature profiles in the
boundary layer: free convection case. T, = 293 K ; ¢ = 200
Wm 2;C, =0.008 kg kg™' (dry basis); a = 45".
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FiG. 21. Dimensionless local vapour concentration profiles
in the boundary layer: frec convection case. T, = 293 K;
¢g=200Wm~*; C, = 0.008 kg kg™' (dry basis): o = 45"
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FiG. 22. Variation of the local Nusselt number as a function
of the inclination angle x: free convection case. T, = 298
K;q=200Wm ?;C, = 000! kgkg™' (dry basis).

this effect on the local Nusselt and Sherwood
numbers. It is seen that the larger the length (x,—x),
the better the mass transfer rate along the last wet
region, which is due to the increase of the wall tem-
perature at the end of the dry zone.

5. CONCLUSION

The laminar heat and mass transfer from an
inclined flat plate with a dry zone inserted between
two wet zones has been studied. Appropriate math-
ematical transformations allowed us to obtain the
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Fi1G. 23. Variation of the local Sherwood number as a func-

tion of the inclination angle «: free convection case.

T, =298 K; ¢g=200 Wm™?; C,=0001 kg kg™’ {dry
basis).
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F16. 24. Variation of the local Nusselt number as a function

of the dry zone length: free convection case. T, = 298 K;

G=200Wm 2; C, =0001 kgkg™' (dry basis); « = 45°;
L=1m

same dimensionless system of equations in order to
study both free and forced convection cases. These
equations were solved by using an adaptation of the
Nogotov procedure. The effects of the main physical
parameters on the velocity, temperature and vapour
concentration profiles in the boundary layer have been
examined and the resulting local Nusselt and Sher-
wood numbers have been determined. From the
results, it appears that the length of the central dry
region is an essential criterion.
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F1G. 25. Variation of the local Sherwood number as a func-
tion of the dry zone length : free convection case. 7, = 298
K; =200 W m~?;

C,. =0.001 kg kg=' (dry basis);
a=45";L=1m.
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ETUDE NUMERIQUE DU TRANSFERT DE MASSE ET DE CHALEUR SUR UNE
PLAQUE PLANE INCLINEE, CONSTITUEE DE ZONES SECHES ET HUMIDES

Résumé—Cet article présente une étude théorique des transferts d’impulsion, de masse et de chaleur dans

la couche limite laminaire qui si développe par convection forcée ou naturelle au-dessus d’une plaque plane

inclinée lorsqu’elle est soumise 4 un flux de densité constante. Cette plaque est constituée de deux zones

humides qui encadrent une zone séche. Les équations sont adimensionnalisées et le systéme différentiel qui

en résulte est résolu par une méthode implicite aux différences finies. Les résultats mettent en évidence

I'influence des principaux parameétres sur les profils de vitesse, de température et de concentration dans la
couche limite : en particulier, la longueur de la zone séche joue un rdle essentiel.

NUMERISCHE UNTERSUCHUNG DER WARME- UND STOFFUBERTRAGUNG AN
EINER GENEIGTEN PLATTE MIT NASSEN UND TROCKENEN GEBIETEN

Zusammenfassung—In der vorliegenden Arbeit wird die Impuls-, Warme- und Stoffiibertragung in der
laminaren Grenzschicht untersucht, die sich entlang einer geneigten ebenen Platte bei freier oder erzwung-
ener Konvektion mit konstanter Wirmestromdichte an der Wand ausbildet. Die Platte besteht aus zwei
nassen Zonen, die durch eine trockene Zone getrennt sind. Aus der theoretischen Analyse ergibt sich
ein System dimensionsloser gekoppelter Gleichungen, das mit Hiife eines impliziten Finite-Differenzen
Verfahrens gelost wird. Die Ergebnisse zeigen den EinfluB der meisten physikalischen GrundgrdBen
auf Geschwindigkeits-, Temperatur- und Konzentrationsprofile in der Grenzschicht. Aufgrund dieser
Untersuchung scheint die Lange der trockene Trennungszone ein grundlegendes Kriterium zu sein.

YHUCJIEHHBIA AHAJIN3 TEIJIO-U MACCOITEPEHOCA OT HAKJIOHHOW NOJIOCKON
TJIACTHHBI [IPU HAJIMYHU BJIAXHON U CYXOH 30H

Annoranus—TeopeTHYeCKH HCCIIEYETC NEPEHOC MMITYJIhCa, TeIIa M MacChl B NTAMHUHAPHOM IOrPaHKUY-
HOM CJIO€, Pa3BHBAlOIMICA HaX HAKIOHHOW IUIOCKOH IJIACTUHOH MO AeicTBHEM CBOGOXHOH MM
BLIHYXXAECHHOH KOHBEKLHMH B CJlyyae NMOCTOSHHOIO 3aJaHHOIO TEIUIOBOIO MOTOKAa Ha creHke. Ilnactuna
H3rOTOBJICHA TAaKUM 00pa30M, 4YTO Ha Hell NPHUCYTCTBYIOT ABE BJAXHbIE 30HBI, Pa3fesICHHBIE CYXOM.
BeiBezicHHash M3 TEOPETHYECKOTO aHAJM3a CHCTEMa B3aMMOCBA3AHHBEIX Ge3pa3MepHBIX ypaBHCHHMH
pelaeTcs YHCIEHHO € NOMOILBIO HESIBHOIO METOAA KOHEYHBIX pa3HOCTeH. Pe3ynbTaThl HIMIOCTPUPYIOT
BJNAHHE GOJILIIAHCTBA OCHOBHBIX (PH3HYECKHX BEJIMYMH HA NPOGHIH CKOPOCTEH, TEMOEPATYp M KOH-
LeHTpaIMid B MOrpaHHYHOM ciioe. U3 maHHOH paboThl clenyer, 4TO AJIMHA CyXO#M pa3e/siomIei 30HBI
SIBJISETCA ONPEIEIISIOIUM KPUTEPHEM.



